Managing and Using Context Information within the PerLa Language

Fabio A. Schreiber -<u>Letizia Tanca — Romolo Camplani — Diego Viganò</u>

Politecnico di Milano
Dipartimento di Elettronica ed Informazione

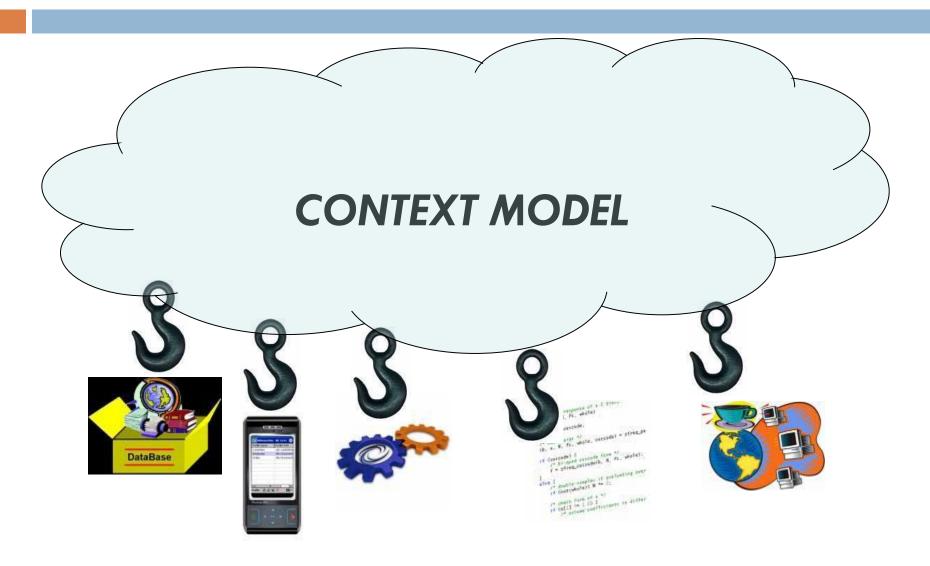
Outline

- Introduction
- The CDT context model
- Context Management in PerLa
 - Language support
 - Contextual-block composition
- Examples
- Conclusions

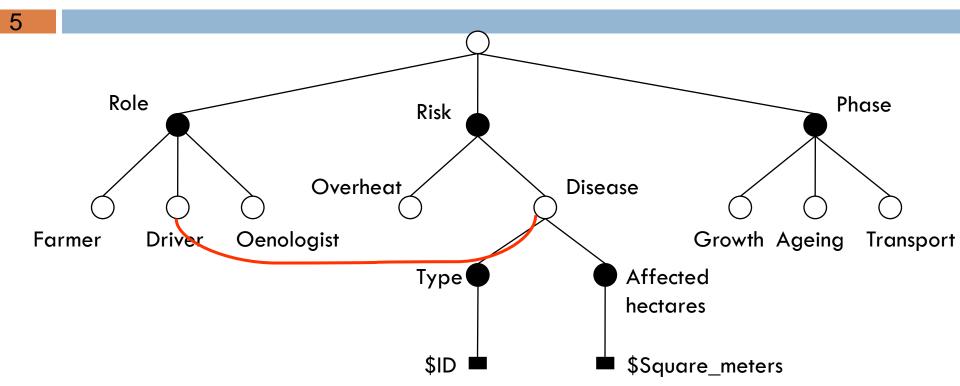
Autonomic Pervasive Systems

- Pervasive systems are widely adopted to monitor many kinds of physical phenomena.
- Context-awareness plays a fundamental role since it allows, through the perception of the environment, to make the system autonomic w.r.t. environmental situations and changes.

Context must be managed both at design and run time.

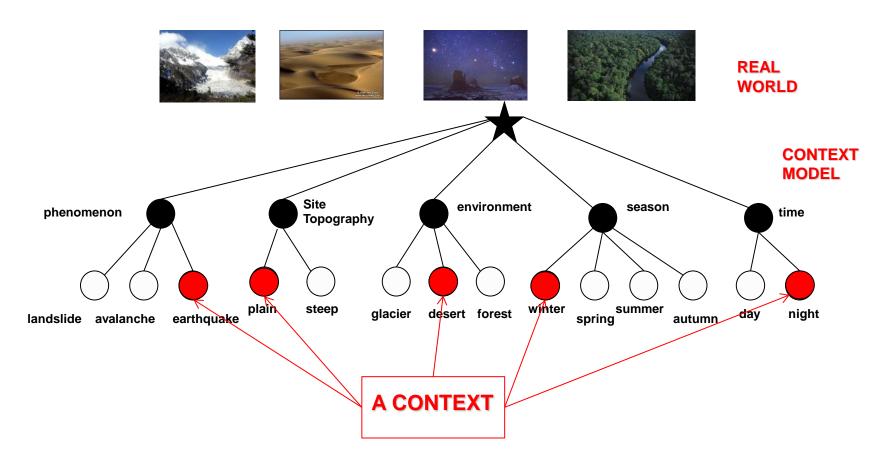

Context management at design time

Context modelling


Application domain modelling (data, functions)

Design of the relationship between the context model and the application domain.

Context management at design time



CDT model

- The environment is modelled in terms of dimension nodes,
 concept (or value) nodes, attributes, and possibly constraints
- A context element is defined as Dimension = Value and a context is a conjunction of context elements
- □ A context can be represented as a particular subtree of the CDT

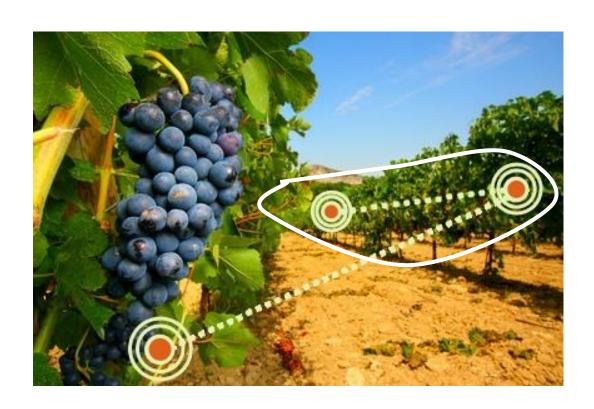
CDT model

Context management at design time

It is important to separate between

- NUMERIC OBSERVABLES
- SYMBOLIC OBSERVABLES

Example: temperatures



Context management at runtime

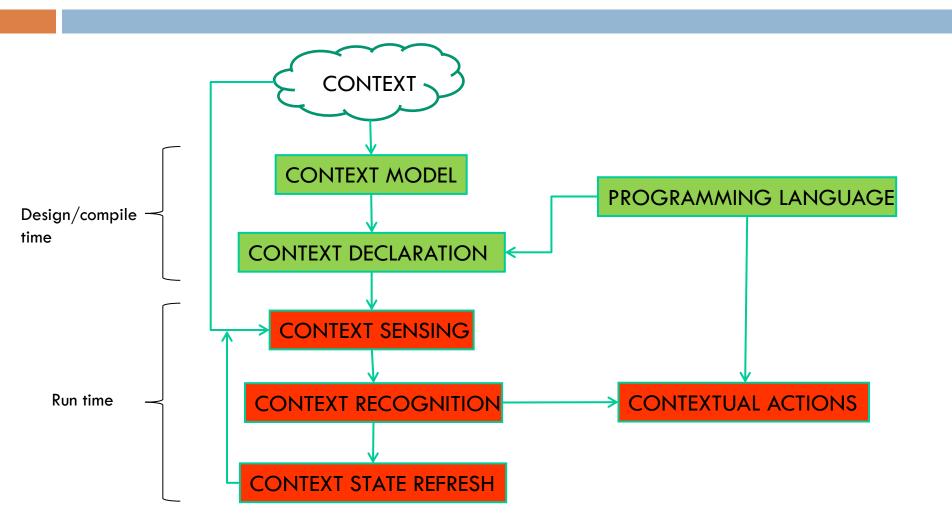
Context-aware behavior **Context activation** (through the association between contexts and "relevant system parts") Other sources Symbolic variables (context dim. values) of context elements Observable, numerical variables gathered from sensors Context in PerLa

Context management at runtime

Apply the sensor query only to the sensors in context:

phase = 'growth' AND
risk='overheat' AND
orientation='westward'

Context management at runtime


Context sensing (numeric observables)

- Context recognition (symbolic observables)
- Context activation
- Context-aware behaviour to be merged into a middleware and a language to manage pervasive systems hiding the complexity of handling different technologies

SELECT temperature, humidity
WHERE temp>20
SAMPLING EVERY 1h
EXECUTE IF device_id > 2

Context-aware Sw Behaviour

Contextual block structure

ACTIVATION COMPONENT

ENABLE COMPONENT

DISABLE COMPONENT

REFRESH COMPONENT

The PerLa Context Language

13

```
CREATE DIMENSION < Dimension Name >

[CHILD OF < Parent Node > ]

[CREATE ATTRIBUTE $ < Attribute Name > ] |

{CREATE CONCEPT < Concept Name > WHEN < Condition >

[EXCLUDES < Dimension Name > . < Concept Name > ]

[CREATE ATTRIBUTE $ < Attribute Name > ] *

[EVALUATED ON < Low Level Query > ] } *
```

CDT **declaration** in terms of numeric and symbolic observables

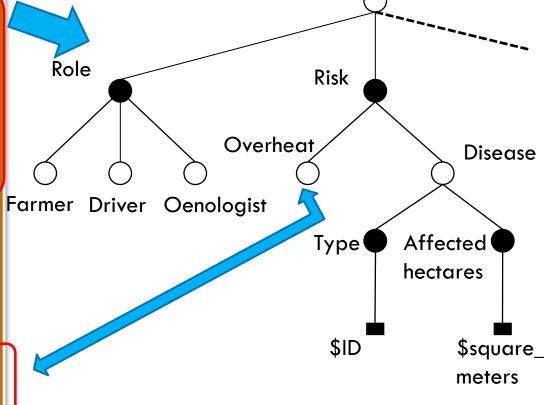
Conversion from numeric to symbolic observable

PerLa Definition of contexts and action(s) to be performed

Activation component

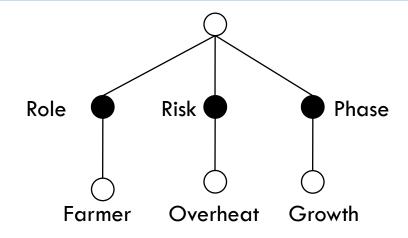
CREATE CONTEXT <Context Name>
 ACTIVE IF <Dimension>= <Value>
 [AND <Dimension>= <Value>]*
 ON ENABLE (<Context>): <PerLa Query> Disable component

Refresh component


Refresh component

The PerLa Context language (2/3)

14


Example: Given the previous CDT

CREATE DIMENSION Role **CREATE CONCEPT Farmer** WHEN get_user_role()='farmer' **CREATE CONCEPT Oenologist** WHEN get user role()='oenologist' **CREATE CONCEPT Driver** WHEN get_user_role()='driver' **CREATE DIMENSION Risk CREATE CONCEPT Disease** WHEN get_interest_topic()='disease' **CREATE CONCEPT Overheat** WHEN temperature > 30 AND brightness > 0.75;

Context in PerLa

The PerLa Context Language (3/3)


```
CREATE CONTEXT Growth_Monitoring

ACTIVE IF phase = 'growth' AND role='farmer' AND Risk='overheat'

ON ENABLE:

SELECT temperature, humidity

SAMPLING EVERY 120 s

EXECUTE IF location = 'vineyard'

SET PARAMETER 'alarm' = TRUE;

ON DISABLE:

SET PARAMETER 'alarm' = FALSE;

REFRESH EVERY 24 h;
```

High Level Interface

LLQ/HLQ/AQ analyzer and executors

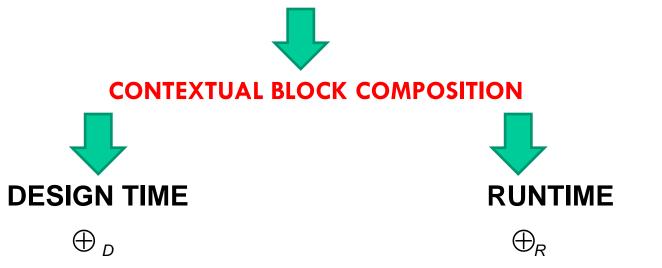
- CDT creation and maintenance
- Context detection
- Perform context actions

Low Level Interface

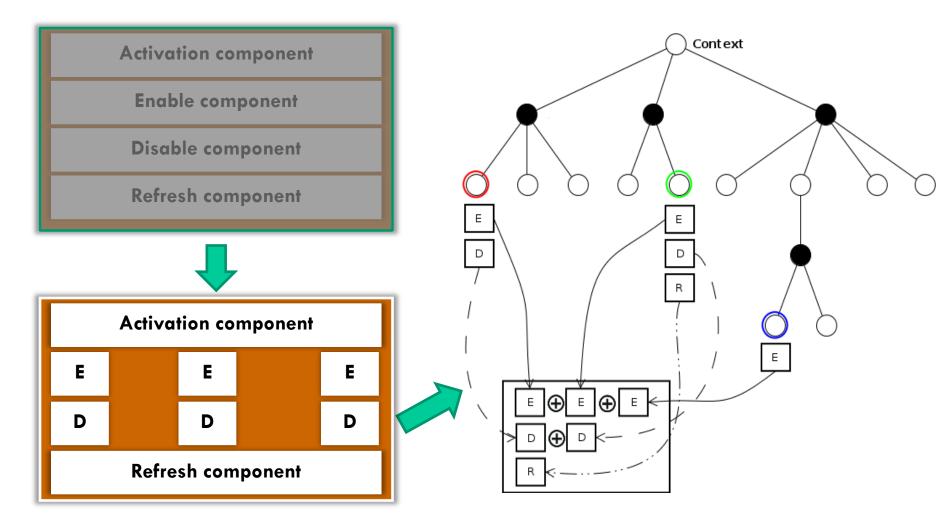
The CM associates to every dimension of the CDT a table that contains the values of every *numeric* observable sampled from the environment and that is used in relation with the *symbolic* observables which describe that dimension

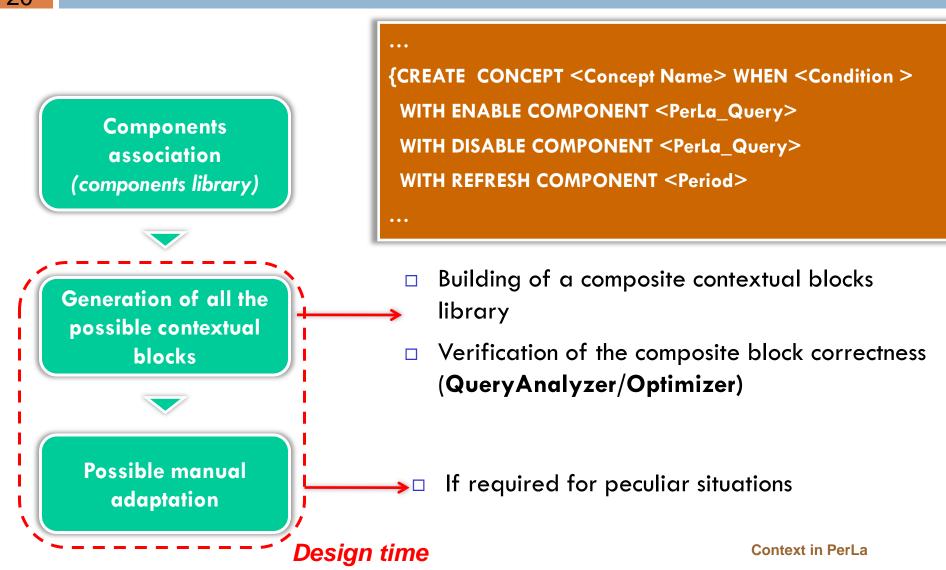
PerLa language and middleware

In the previous example we declared a context that includes the observable "overheat" (declared using the numeric temperature and brightness):


	temperature > 30 AND brightness > 0.75		Role _	Risk	Phase
			Farmer	Overheat	Growth
ID	Town overtows Drinktness	The context	can be co	onsidered	as

ID	Temperature	Brightness
1	28	0.60
3	31	0.71
4	33	0.80


active for all the sensors for which the rule is **true**, and the contextaware actions will be performed only on them.


Contextual block automatic composition

- Problem: given a CDT, the number of possible contexts exponentially grows with the dimensions number
- □ E. g.: 5 dimensions, 3 conceps/dim (average) \Rightarrow >500 contexts!
- **Solution**: automatic composition of the contextual block, based on partial components:

Contextual block automatic composition

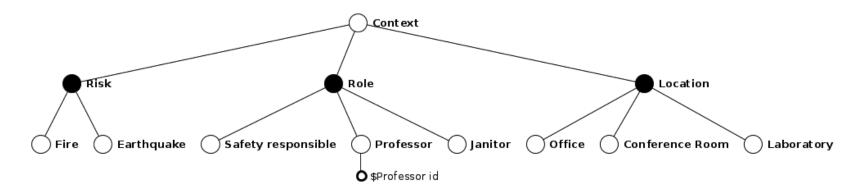
Design time vs. run time composition

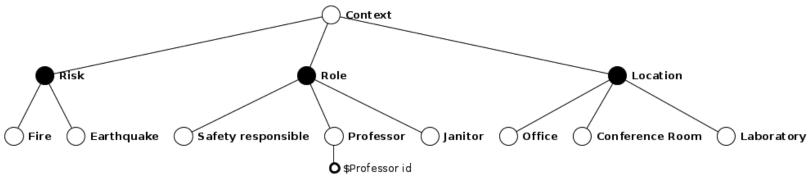
Design time:

- Fully controlled by the designer
- Static vision

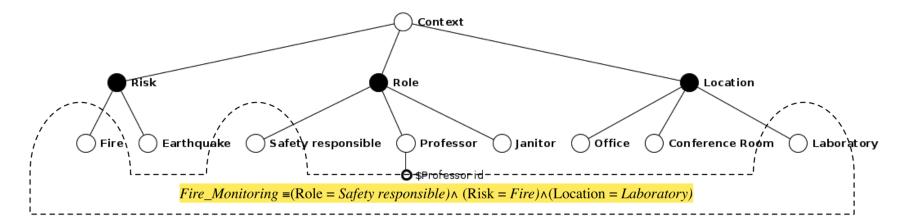
Run time:

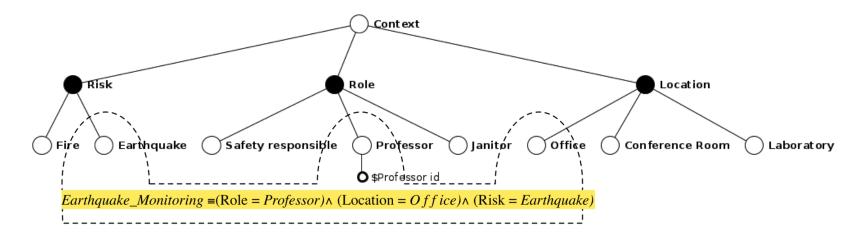
- Autonomic behaviour of the system
 - Contextual blocks are composed only for the active context
- No further changes allowed
- Performance issues (more contexts can be simultaneously active causing frequent context switching!)


A suitable trade-off is a designer's choice based on the system requirements


Clause optimization (e.g. SELECT)

```
WITH ENABLE COMPONENT:
  SELECT MAX(temperature)
  SET PARAMETER 'alarm' = TRUE:
WITH DISABLE COMPONENT:
                                        ON ENABLE:
  SET PARAMETER 'alarm' =
                                           SELECT MAX(temperature),
  FALSE:
                                           equipment id
WITH REFRESH COMPONENT: 5s
                                           SAMPLING EVERY 5s
                                           SET PARAMETER 'alarm' = TRUE;
                                        ON DISABLE:
                                           SET PARAMETER 'alarm' = FALSE;
WITH ENABLE COMPONENT:
                                        REFRESH EVERY: 1s
  SELECT equipment id
  SAMPLING EVERY 5s
WITH REFRESH COMPONENT: 1s
```


Highest refresh frequency selection (lowest time constant)


Context in PerLa

- We want to define a context-aware behaviour to control:
 - Fire
 - Earthquake

Fire Risk concept

CREATE CONCEPT Fire

WHEN temperature > 40

WITH ENABLE COMPONENT:

SELECT MAX(temperature)

SET PARAMETER 'alarm' = TRUE;

WITH DISABLE COMPONENT:

SET PARAMETER 'alarm' = FALSE;

WITH REFRESH COMPONENT: 5s

Earthquake Risk concept

CREATE CONCEPT Earthquake

WHEN delta_x > 2 AND delta_y > 3

WITH ENABLE COMPONENT:

SELECT delta_x,delta_y;

WITH REFRESH COMPONENT: 1s

Location

C CREATE CONCEPT Office

WHEN get_current_location() = 'Office'

WITH ENABLE COMPONENT:

SELECT office_floor

SAMPLING EVERY 2m

CREATE CONCEPT Laboratory

WHEN get_current_location() = 'Laboratory'

WITH ENABLE COMPONENT:

SELECT equipment_id

SAMPLING EVERY 5s

WITH REFRESH COMPONENT: 1s

CREATE CONCEPT Conference Room

WHEN get_current_location() = 'Conf. room'

WITH ENABLE COMPONENT:

SELECT room_name
SAMPLING EVERY 20s
WITH REFRESH COMPONENT: 1s

Role

CREATE CONCEPT Professor

CREATE ATTRIBUTE \$Professor_Id

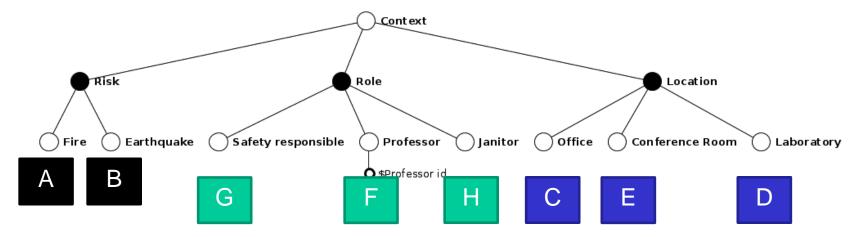
WHEN get_current_role() = 'Professor'

WITH ENABLE COMPONENT:

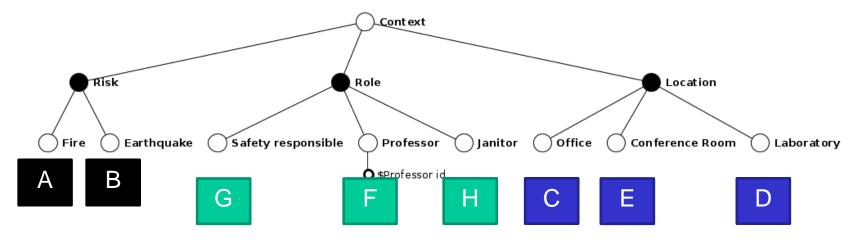
SELECT professor_name,professor_surname

WHERE 'professor_id' = CDT.Role.Professor_ID

G


CREATE CONCEPT Safety_Responsible

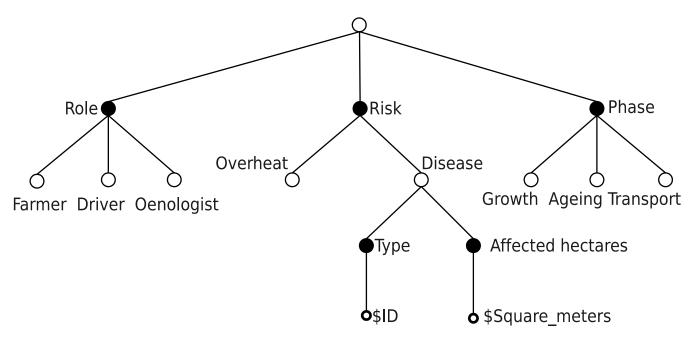
WHEN get_current_role() = 'Safety Responsible'


CREATE CONCEPT Janitor

WHEN get_current_role() = 'Janitor'

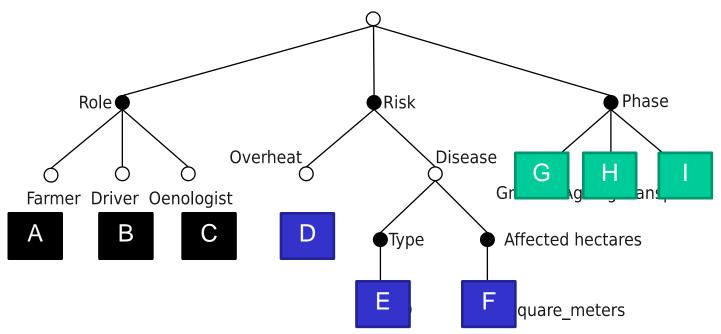
Fire_Monitoring \(^(\text{Role} = \text{Safety responsible})\)\(\)\(\text{(Risk} = \text{Fire})\)\(\)\(\)\(\)\(\)\(\)\(\)

 $Fire_Monitoring = A \oplus G \oplus D$

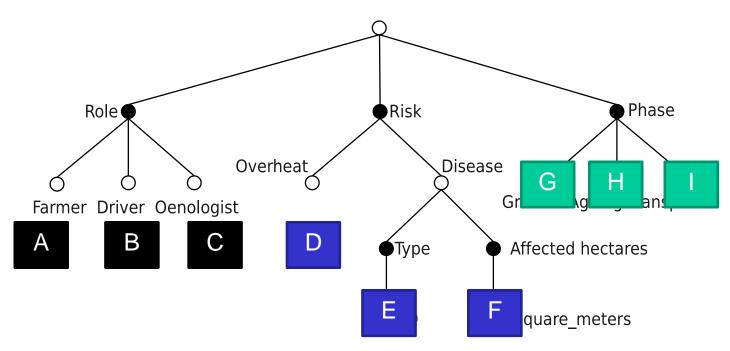


Fire_Monitoring \(^{\color (Role = Safety responsible)}\)\)\(\text{Risk} = Fire)\)\(\text{\(U\)}\)\(\text{Location} = Laboratory\)

```
Fire_Monitoring = A  G  CREATE CONTEXT Fire_Monitoring
ACTIVE IF (temperature > 40 AND ...)
ON ENABLE:
SELECT MAX(temperature), equipment_id
SET PARAMETER 'alarm' = TRUE;


ON DISABLE:
SET PARAMETER 'alarm' = FALSE;
REFRESH EVERY 1s;

Context in Part a
```



 $Growth_Monitoring \equiv (Role = Farmer) \land (Phase = Growth) \land (Disease.Type = 3) \land (Disease.AffectedHectares = 200)$

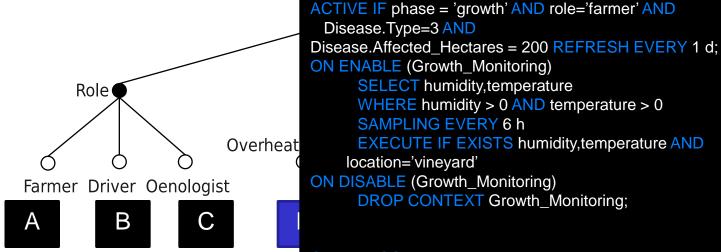
 $Transport_Monitoring \equiv (Role = Driver) \land (Phase = Transport) \land (Risk = Overheat)$

 $Growth_Monitoring \equiv (Role = Farmer) \land (Phase = Growth) \land (Disease.Type = 3) \land (Disease.AffectedHectares = 200)$

 $Transport_Monitoring \equiv (Role = Driver) \land (Phase = Transport) \land (Risk = Overheat)$

 $Growth_Monitoring = A \oplus G \oplus E \oplus F$

Transport Monitoring \equiv B \oplus I \oplus D


Disease.Type=3 AND

location='vineyard'

CREATE CONTEXT Growth_Monitoring

SELECT humidity,temperature

SAMPLING EVERY 6 h

Growth Monitoring $\equiv A \oplus G \oplus E \oplus F$

Transport Monitoring $\equiv B \oplus I \oplus D$

```
ON DISABLE (Growth_Monitoring)
      DROP CONTEXT Growth Monitoring;
CREATE CONTEXT Transport_Monitoring
ACTIVE IF phase = 'transport' AND role='driver' AND
  Risk='overheat' REFRESH EVERY 24 h;
ON ENABLE (Transport_Monitoring)
     SELECT temperature, gps_latitude, gps_longitude
     WHERE temperature > 30
     SAMPLING EVERY 120 s
      EXECUTE IF location = 'truck departing zone'
     SET PARAMETER 'alarm' = TRUE;
ON DISABLE (Transport_Monitoring)
     DROP Transport Monitoring;
      SET PARAMETER 'alarm' = FALSE;
```

WHERE humidity > 0 AND temperature > 0

EXECUTE IF EXISTS humidity, temperature AND

Comparison with Active DB

ACTIVE DATABASES	PerLa FOR CONTEXT
EVENT data modification: insert, delete, update	EVENT general system events, clock,
CONDITION (optional) SQL predicate	CONDITION context definition formula
ACTION sequence of SQL statements (or extensions, e.g. PL/SQL in Oracle)	ACTION Data, code, services tailoring, whatever action on the physical system

Comparison with Active DB

ACTIVE DATABASES	PerLa FOR CONTEXT
COUPLING (immediate/deferred)	ONLY IMMEDIATE
ATOMIC/INTERRUPTIBLE ACTIONS	ONLY ATOMIC
EVENT CONSUMPTION (never, local, global)	EVENT CONSUMPTION (never, only at context change)
CONFLICT RESOLUTION (serial/parallel)	CONFLICT RESOLUTION (serial, managed by priority policies)

Comparison with programming languages

38

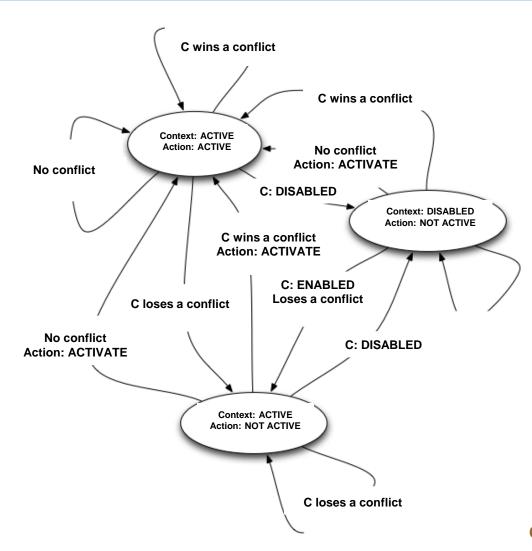
Phílosophy without Science is empty, Science without Phílosophy is blind

9. Kant

PARAPHRASE

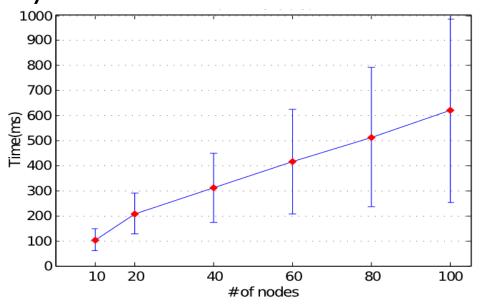
Programs without Data are empty, Data without Programs are blind

F. A. Schreiber


Comparison with programming languages

39

	PerLa	СОР	
Context	Numeric observables → Symbolic observables (Coutaz, CACM, 2005)	Any computationally accessible information (Hirschfeld, JOT, 2008) Numeric observables → Symbolic observables	
Context model	Context Dimension Tree (CDT) Context Element = {Dimension _i = Value _i } Multiple active contexts	Left to application software Multiple active contexts	
Context declaration	Contextual Block	Left to application software	
Context sensing and recognition	LLQ from sensors User declared variables GET_ ACTIVE IF REFRESH EVERY	Layer activation mechanisms	
Contextual actions	ON ENABLE ={TRUE/FALSE} → LLQ/HLQ/AQ ON DISABLE ={TRUE/FALSE} → LLQ/HLQ/AQ Partial components associated with each Context-element WITH {ENABLE/DISABLE/REFRESH} COMPONENT	Behavioural variations Partial methods WITH WITHOUT Context in PerLa	


Context in PerLa

Conflict resolution

Performance evaluation

In its original configuration, PerLa's middleware scales linearly w.r.t. the operations (i.e.: LLQs, HLQs, AQs) that are performed on the deployed devices.

The creation of the CDT and the search for active contexts scale linearly too (simple lookup control in every table) and thus <u>do not</u> impact PerLa's linear behaviour.

- PerLa allows for an easy and rapid passage between numeric and symbolic observables.
- Morover it allows to model and define the context with the preferred granularity, and to actuate context-aware actions within the same language.
- It offers design support tools through the contextual block composition both at design and at run time.
- The PerLa system is operating in a rockfall monitoring project in Mt. San Martino in Lecco (MI) since April 2010.
- □ We are currently focused on the following issues:
 - the management of possible context conflicts.
 - the management of context evolution
 - Assessing C-A systems stability

Further readings

on CDT:

- Bolchini C., Curino C.A., Orsi G., Rossato R., Quintarelli E., Schreiber F.A.,
 Tanca L. And What Can Context Do For Data? Communications of
 ACM (VE), Vol.52, n. 11, p.136-140, (2009)
- Bolchini C., Quintarelli E., Tanca L. Carve: Context-aware automatic view definition over relational databases - Information Systems, Accepted manuscript (unedited version available online: 12-MAY-2012).
- http://tanca.dei.polimi.it/images/documents/sac2012.pdf

on PerLa:

- Schreiber F.A., Camplani R., Fortunato M., Marelli M., Rota G. PerLa: A Language and Middleware Architecture for Data Management and Integration in Pervasive Information Systems IEEE Transactions on Software Engineering, Vol. 38, n. 2, pp. 478-496, (2012)
- http://perlawsn.sourceforge.net

?

THANK YOU